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Lectures 13, 14:Lectures 13, 14:
Phonons: thermal propertiesPhonons: thermal properties

Lattice vibrations in 3Lattice vibrations in 3--D: the contribution D: the contribution 
to the thermal properties of solidsto the thermal properties of solids

��
Aims:Aims:

�
Phonons in real, 3-D crystals:

� some examples: Rare gas solids, Alkali halides
�

Lattice thermal properties:
�

Heat capacity:
� Debye treatment
� T3 law for low temperature heat capacity

�
Thermal conductivity

� Phonon scattering
� Mean-free path
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Phonons in 3Phonons in 3--D crystals: D crystals: 
Monatomic latticeMonatomic lattice

��
Example: Neon, an Example: Neon, an f.c.cf.c.c. solid: . solid: 

�
Inelastic neutron scattering results in different 
crystallographic directions

�
Many features are explained by our 1-D model:

�
Dispersion is sinusoidal (n.n. interactions)

�
All modes are acoustic (monatomic system)

�
Two types of mode:

� Longitudinal (L): generally have higher energy
� Transverse (T): generally have lower energy

� often degenerate in high symmetry 
directions (not along (ξξ0) above)

�
Minor point: L mode along (ξξ0) has 2 Fourier 
components, suggesting next-n.n. interactions (see 
problem 10, sheet 2). (In Neon, the effect arises purely 
from 3-D nature of fcc structure.)

Phys. Rev. B
11, 1681, (1975)

Phys. Rev. B
11, 1681, (1975)

(00 )ξ
( )ξξξ

( )ξξ 0



May 04 Lecture 13 3

Phonons in 3Phonons in 3--D crystals: D crystals: 
Diatomic latticeDiatomic lattice

��
Example:  Example:  NaClNaCl,, has sodium chloride structure!

�
Two interpenetrating f.c.c. lattices

�
Main points:

�
Again, the1-D model gives several insights:

�
Optical and acoustic modes;

�
Longitudinal and transverse modes;

�
Dispersion along (ξξξ) is simplest and most like 
our 1-D model

� (ξξξ) planes contain, alternately, Na atoms and 
Cl atoms (other directions have Na and Cl mixed)

�
Minor point:

� Modes with same symmetry cannot cross, 
hence the avoided crossing between acoustic 
and optical modes in (00ξ) and (ξξ0) directions.

� Ignore the detail for present purposes

Note energy scales:
8 THz ~ 30 meV

(c.f. Neon)

Note energy scales:
8 THz ~ 30 meV

(c.f. Neon)
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Lattice heatLattice heat--capacitycapacity
��

Heat capacityHeat capacity
�

Follows from differentiating the internal energy 
(as usual).

�
Internal energy

�
Density of modes g(ω). 

� Einstein Approximation: all modes have the 
same frequency, ωE. (See lecture 6)

� Debye approximation:  In the low temperature 
limit acoustic modes, with small q, dominate. So 
assume ω = vs q.

� Exact: calculate g(ω), numerically, from the 
phonon dispersion curves

�
Einstein approximation gave the correct high-
temperature behaviour (C = 3NkT) and gave 
C 0 as T 0 though the exact temperature 
dependence was inaccurate (the reason, we 
can now understand from the phonon 
dispersion curves)
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Vol, V = a3.Vol, V = a3.

DebyeDebye ModelModel

��
Density of statesDensity of states

�
Assume ω = vs q. i.e. dispersionless waves

�
Result is therefore similar to that for photons in 
a 3-D cavity (black body radiation), except for a 
numerical constant.

where ω = vs q has been substituted in RHS.
�

Energy becomes:

�
Formula gives the full T dependence.  We are 
interested in the behaviour at low T.
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heat capacity atheat capacity at
lowlow--temperturetemperture

��
Limiting behaviour as Limiting behaviour as TT 00..

�
At low temperature the higher frequency 
modes are not excited.  Thus contributions to 
the integral for large ω (~ωD) can be ignored 
and ωD replaced by ∞.

�
Differentiating gives the heat capacity as

gives the correct, observed dependence at low 
temperatures.  Recall the Einstein model gave 
an exponential dependence at low T.
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Measured density of statesMeasured density of states

��
Example: Aluminium Example: Aluminium (shows common features)(shows common features)

�
Measured density of states compared with 
Debye approximation.

�
Both measured and Debye density of states 
are similar at low ω, as expected (ω∝q).

�
Debye frequency chosen to give same total 
number of modes (i.e. equal area under both 
curves)

�
Largest deviations where phonon modes 
approach zone boundary.

�
Measured curve is complex because the 3-D 
zone has a relatively complicated shape, and 
the transverse and longitudinal modes have 
different dispersions (as we have seen earlier)
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Thermal conductivityThermal conductivity

��
Phonons and thermal conductivityPhonons and thermal conductivity

�
Phonons have energy and momentum and, 
therefore, can conduct heat.

�
Kinetic theory gives the thermal conductivity

� Excess temperature of phonons crossing plane

� Excess energy of each phonon
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Definition of thermal conductivityDefinition of thermal conductivity

conductivity..........conductivity..........

�
Number density of phonons, n

�
Heat flux across plane

�
Thermal conductivity
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Temperature dependence of Temperature dependence of 
thermal conductivitythermal conductivity

��
Mean free path Mean free path – limited by scattering processes

�
With many scattering processes:

Thus, shortest mean free path dominates
�

“Geometric” scattering:
� Sample boundaries (only significant for purest 

samples at low temperatures).
� Impurities: scattering rate ~ independent of T.

�
Phonon-phonon scattering:

� Phonons, being normal modes, should not affect 
each other.  However, in an anharmonic lattice, 
they can scatter. Free path ~ 1/T.

��
Insulators Insulators (no contribution from electrons).

�
In pure crystalline form
the conductivity can be
very high (larger than
metals)

�
N.B.  Non-crystalline
systems (eg glass) have
much lower conductivity.
l ~ local order 
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