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B Overview

® part A Scattering

» Probes and phenomenology:

» Scattering of electrons, photons and
neutrons. Perfect and distorted lattices.

¥ part B Excitations

» Electronic properties of solids:

» Ultra-violet and x-ray photoemission. Band-
structure determination, core-level shifts.

» Surfaces and interfaces:

» Surface phenomenology, the effect of a
surface on a bulk probe.
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Overview, cont..

® part C Atomic time- and length-scales
» Microspcopy:
» Structure and spectroscopy. Electron
microscopy; Scanned probe techniques.

Atomic force microscopy and probes of local
forces. Atom manipulation.

» Dynamics:
» Observation of electronic and atomic motion
on sub-picosecond time-scales. Pump probe

laser methods. Scattering approach for atomic
motion - spin-echo technique.

= Books and sources

» “Diffraction Physics”, JM Cowley
“Structure and Dynamics”, MT Dove
“Modern Techniques in Surface Science”, DP
Woodruff and TA Delchar
“Scanning Probe Microscopy and
Spectroscopy”, R Wiesendanger

» plus recent research papers



Experiments and Condensed
Matter Physics

[ Physics ]

A
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[ Large scale ][Complex systems][ Small scale ]

» Complexity does not necessarily imply
complication: e.g.: emergence of order in
complex systems.

® Overall aim:

» Appreciate the experimental approach to
characterising and understanding complex
systems.

® brobes of condensed systems;

» Internal probes:

» Important, especially for device
characterisation.

» Usually limited to electrons

Internal . 7
probe Sample Transmission
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Internal and external probes

¥ External probes

» Photons, electrons, neutrons etc....

Diffraction (elastic scattering)

External Inelasti .
probe nelastic scattering
Emission
Conductivit
Sample \ — y

Transmission

» Huge variety of phenomena

» In the present course we will:
» Concentrate on external probes
» Focus on the generality of behaviour.
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Science and technology Instrumental technology

» Experiment requires technology. Key u Early diffractometers
technologies include:

» Liquefaction of gases ~1907: low temperatures.

» Electronic methods for instrumentation, control
and, more recently, experimental design.

»Vacuum technology: controlled environment for
samples (e.g. MBE growth) and measurement.

> New probes: Lasers, synchrotrons, etc.

» Simple devices, with simple detectors (eg. film
for X rays). Debye-Scherrer camera for
powder diffraction.

® Time-line
1900 . ‘40 ‘60 ‘80 2000
———— | Xrays
Synchrotronsl N __ e —
" Reactors spallation eutrons | : ”M '8 77
_____ , Electron :
TEM SEM ESEM microscopy (Photographs, Dove p121)
— | Lasers » Similar devices still used in routine lab-
_ . SPM measurements.



® Modern diffractometers
» Complex and specialised functionality
» Typically with multiple, electronic detection.
» Usually found at central facilities

" Example:

» Powder neutron diffractometer at Rutherford
Appleton Lab.

Plan view
100 K CH, moderator
/ 100 m i guide

Dizk choppers at .
Backscattering
fmé&Sm detectars (165

Source technology

" Early instruments
» small, low power sources. eg. conventional X-

ray tube.

» Fixed wavelength, not well monochromated

" High power sources
» For x rays, a synchrotron offer greater
brightness, together with tuneable wavelength
and improved monochromaticity

» Brightness in photons/(s mm?2 mrad?) into
0.1% bandwidth. (Source Duke, Synchrotron radiation).

10%%

Brightness

\ Daresbury synchrotron
|

)80 2000

2/1/2008



Part A: Scattering
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Far field

» Scattering potentials:
» X rays scatter predominantly from electrons.

> Electrons from charged particles (Coulomb
interaction)

» Neutrons scatter mainly from the nucleus
» In most cases the scattering can be
approximated by an assembly of point
scatterers. A continuous distribution of scattering

density can be constructed by integration over
volume elements.

Scattered

Incident
wave ﬁwave
R (D

1T

Wave amplitude Detector

~ exp(ik.r)+ f(g)exp(ikr) N

r
Scattered, spherical waveJ

Incident, plane wave Dove Ch. 6 9

» We assume the scattering is weak (no multiple
scattering).

» At the detector, far from the scatterer, the
spherical wave is approximately a plane wave.

Incident Scattered
/ wave wave
/R Nt
ki ) [ ] o
I °
Origin, O

» Taking the phase of incident and scattered wave
to be zero at the origin,
Incident wave: exp(iki g ) (incoming)

Scattered wave: f, exp(-ik _rj) (outgoing)
» Adding the incoming and outgoing phases, the
wave scattered from scatterer, |, is

f, elz<p(i(ki —k )r;)=f,expliQr;)

Q [ Scattering vector, Q

10
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Kinematic scattering as a
Assembly of scatterers Fourier transform

» Scattered amplitude has two parts:
F~ £ expliQr;)
j

> For an assembly: F~ Z f; eXp(iQ-rj)
i Y

|dentical rer i
dentical scatterers F ~ fZexp(lQ.Fj) Atomic form factor Structure factor
j

(all f; the same)
» In the case of a continuous distribution of
scatterers, having density, p(r), then

» For a single scatterer: F ~ fj exp(iQ_rj)

Scattering from a lattice
> In general the phase factors, Q.r, will add F~ Ip(r)exp(iQ.rj )dr
:Zgg?]rgmaurr}z;zea’lICaeTIe(:g’I(’il)ples of 2r. For a > This is knoyvn as the kinemati.c apprgximat.ion.
r. =laX+mby + nc2 It is useful in the weak scattering limit and is
] thus good for X rays and neutrons. As
F~f Z exp(i (Qxla + Qymb + anc)) electrons scatter more strongly it is usually
Imn necessary to consider multiple scattering
Q, = 27z/a (Dynamical scattering theory)
. » Note the scattered amplitude is the Fourier
=0 exceptwhen <Q, =27/b antihrzitcu)rgles Transform of the distribution of scatterers.
Q, =27x/c

» We recognise Bragg scattering.
(Note, the result is true generally, not just in the

weak scattering limit.)
11 12



Friedel's Law

F(Q)= J‘,o(r)exp(iQ.rj Jir
» If p(r) is real (a good approximation for X rays

away from an absorption energy). So,
replacing Q with — Q,

F(-Q)= fp(r)exp(i -Qrr, Jdr
=F(Q)

» We measure

FQ) =FQFQ)=F(-Q)

hence the diffraction pattern is symmetric
about the origin. The result is known a
Friedel's Law.

» Deviations from Friedel's Law can be
exploited to aid the determination of complex,
multi-atom structures. For example, by tuning
the energy of X rays near to an absorption
edge, p(r)=p (r)+ip (r) forthe
absorbing atoms. Deviations from symmetry
in the scattering intensity clearly relate to
these particular atoms.

Dove sections 6.7, 6.8 13
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The phase problem

» Since p(r) and F(Q) are related by a Fourier
transform then knowledge of F(Q), a complex
function, would give the scattering density
directly. The phase information in F(Q) is not
present in the quantity we measure, |F(Q)2.

» The phase is, however, the more important
than the amplitude of F(Q). Example (from
Dove. p142).

» Consider two digitised characters, | and O, as
real, 2-D scattering systems.

I [l

» The corresponding measured intensities,

|F(Q)|?, are
L T—— -
* .
o
T
o
e * ol

» Note that there are differences (as expected)
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Phase problem cont..

» Differences in the phases are more important as
can be seen by reconstructing the objects by

=11 for

centro-
symmetric

objects

0
©

» Note the characters are transposed, indicating
that the (normally absent) phase information
dominates the reconstruction.

15
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Structure from diffraction

" Overcoming the phase problem

» Structure determination is now a routine process
and largely an automatic one.

» Probabilistic rules exist giving phase relations,
e.g. Sayre’s equation.

» For a centrosymmetric structure where,
pr)=p(-r) =F(Q)=|F(Q)s(Q)
and s(Q)= £1. It can be shown that, with a high
probability strong beams, that

s(d,)xs(d,)xs(d;) =1if g, +0, +0d; =0
Thus, if some phases can be guessed others can
be deduced. lteration can lead to a Fourier
synthesis that solves for all the atoms.

» A final stage of refinement optimises the
structure by minimising differences between
measured and calculated intensities.

» Older methods include Patterson synthesis. We
explore the Patterson function in order to see the
connection between scattering and correlations
in space and time.

16



Correlation functions

» For the next section we follow the treatment
by Cowley (Ch.5 and 12) and use his
nomenclature and FT definitions. Specifically:
FT[f(x)]=F(u)= J. f (x)exp[27iux]d x
f(x)=FTFT[f(x)]]= j F(u)exp[-2ziux]du
Including 2 in the exponent avoids constant

multipliers in either of the integrals. (see
Cowley Ch. 2, definitions and transforms)

» In terms of our usage so far: Q =2 ru.
|

FT2 () [= FT[F () F(u)]
» Using the convolution theorem
= p(1)* p-1)= [ PR)p(r + R)IR =P(r)

_

[Spatial correlation function] [ Patterson Function

Cowley Ch. 5 & 12 17
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Assemblies of atoms

» If the jth atom has density, pi(r).
Then the total density is

plr)=3 p,(F)(r—r )
plr) o)

Zpi(r)*Pj(_r)*5(r_ri)*5(r_rj)
:Zj:[ﬂi(r)*,oj(_ r)]*a(r_(ri _rj)) %

» Typically p(r) is approximately gaussian and

solis p*p; (though a little broader)
>%Indicates we have a peak in the
correlation function at every interatomic

vector ri-r; and an identical peak at ry-r; .
» For a dimer and trimer we have:




Time dependent structures

® 4_D Correlation function

» In general structures are not static so we need to
consider correlations in time and space.

P(r,t)= [ p(RT)p(r +R,t+T)dRdT

= p(r,T)* p(-r,-t)
and its Fourier transform

Fluv) = ” P(r,t)exp(2z(u.r +1t))drdt

Changeink as a
result of scattering

Change in frequency as
a result of scattering

» u is determined by the scattering geometry,
vis determined by the energy change (AE=hv)

19

Diffraction

" Relationship between 4-D and 3-D
Patterson functions

» Consider purely elastic scattering (strict
definition of diffraction), so that v=0 in the
previous equation

F(u,0)° = ” P(r,t)exp(2zu.r)drdt

- HJ' P(r,t)dt]exp(zﬂiu.r)d r

Time average of the
4-D Patterson function

» Diffraction corresponds to scattering from the
time average of the structural correlations.

20
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Probes: X rays
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Probes: Electrons

» The theory has been general in the sense that we

have only assumed weak scattering.

» Different probes have different scattering
mechanisms and are therefore sensitive to
different aspects of a sample.

» Scattering of X rays is dominated by electrons.

» For an electron located at the origin having some

restoring force (giving it a resonant frequency,
®,). An incident wave (with ® > @, )
E =E, exp{i(at —k.r)}

undergoes Thomson scattering giving radiation at

observation point R as
e’ 1 . .
E.=E, Sz gsin w expli(at —k.R)}

mc w = angle between observation
“Scattering Strength” and direction of acceleration
of the electron
of one electron

»1/m ensures nuclear charge does not contribute.
» Total scattering comes from e density p(r).

Ref: Cowley Chapter 4

21

» To a good approximation for elastic scattering,
electrons scatter from the electrostatic potential.
Poisson’s equatlon

V(p———: Zéril—p(r)}/_

» Scattering form factor is a FT of the scattering
density (p. 9). i.e. FT of ¢(r) in the present case.

Note:

FT(V2p)=27uf FT(¢)

Hence we can take the “scattering density”, in
earlier equations, roughly as the charge in the
system (electrons and nucleus) remembering that
there is an additional factor 1/u?.

» Different spatial extent of the nuclear and
electronic charge means that:

» Electron charge:
>decays slowly with r — scattering localised in u.

» Nuclear charge:
> localised in r — scattering decays slowly with u.

22
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Probes: Neutrons Neutron scattering
| |
» The scattering of neutrons is dominated by the » The scattering can be approximated by an
nuclear forces, hence the main interaction is with effective potential
the nucleus. V(r)= aﬁ) axh
» Range of the interaction ~10-'m is much smaller » b varies strongly from one element to the next and
than a typical wavelength ~10-"m. The scattering can be either +ve or —ve.
is isotropic (s-wave scattering) and the scattered 2 :
wave is _ e 2H abundant isotopes
scattering length | < |
= ——exp(ikr e
Vs r p( ) % Ly Red points: isotopes often
i i ; ; i c used for isotopic-substitution
The minus sign is a convention so that b is +ve for & (Meth. Expt. Phys, Vol 23A)
a repulsive potential. 2, . .
» The scattering length is directly related to the E ”
scattering probability (no. of scattered neutrons S Aomic Number
» If the velocity is v, no. passing » Incident flux -
through areas dS per second is , » The neutron spin must also be considered.
vd S‘I/IS‘Z —vds bi —vb2dO D= V‘l/jinc‘ =V » If the scatterer consists of a single isotope, spin |,
* r2 the neutron-nucleus system has the values 1+1/2, I-
» Cross section is ) > Total scattering 1/2, with scattering lengths b*, b. In general the
do Vb2 do scattering lengths are different and the scattering is
=b? f—— o, =4’ some kind of average over all possibilities (Unless
d Q ©dQ the nuclear spins and/or neutron are polarised)
Squires "Thermal neutron Scattering" Chapter2 23 24
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Coherent and incoherent
scattering
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» Randomness in the distribution of scattering
lengths is conventionally dealt with by considering
the scattering to be composed of a coherent
fraction and an incoherent fraction.

» This is the scattering from a system consisting of
identical scatterers having the average scattering
length, b. The strength of the scattering (cross-
section) is o, = 47z?b)2 and includes all
interference effects arising from the different
nuclear positions.

» This term is the difference between the ideal
coherent scattering and the scattering from the
real system with disorder in the scattering lengths.
In fact it can be shown that the corresponding
cross-section is o, = 47z2b2 _(5)2} . Equivalent
to a sum of intensities from all the nuclei, without
phase information (no interference).

25

» Hydrogen (1=1/2):
»s=1+1/2=1: (25+1)=3 : b* = 1.04x10m :
»s=1-1/2= 0: (2s+1)=1: b = -4.74x10¥m :

6=§b+ +1b- =0.38x10%m
4 4

2 _§ +
6)-3s

> coherent Oy = 47(0) = 1;8:2[X10_2
»>incoherent Oipeon = 471D’ _(b) =58%10""m’

» Deuterium (I=1):
> 5=1+1/2=3/2: (2s+1)=4 : b* = 0.95x104m :
»5=1-1/2=1/2: (2s+1)=2 : b-= 0.10x10%m :

B:ﬂw +3b* =0.67x10"m
6 6

07)=2

6

»coherent o = 47r@2 =5.6x10"%m?
»incoherent .., = 47r{b2 ~(by }: 1.96x10"*m?

» Deuterated samples show coherent scattering;
non-deuterated show only incoherent scattering.

26

Cincon dOMinant

’ +1\b’\2 — 6.43x10%®m?
4

oo dominant

b+

? +3\b*\2 =0.61x10°2%
6

13



Absorption and resonant
scattering

" Scattering density

» In most of the discussion so far we have
taken the scattering strength to be a real
function.

» Reality is more complicated. For example:
» X rays and electrons can excite atoms
resulting in absorption.
» Neutrons can scatter resonantly and form a
compound nucleus.
» All these phenomena can be treated by
allowing the scattering density (or scattering
length) to become complex.

» Usually the complex part is only non-zero in a
small range of energy (or, equivalently, k).

» Provided these regions are avoided in
experiment the assumption of a real
scattering density (scattering length) is valid.

» Conversely, the effects can be exploited to
introduce atom-specific information in the
data.

27

Diffraction geometry

[¢]

Wavelength/A

" Experimental geometry is determined by

the probe characteristics.

» The wavelength/energy relationship depends
on the particle:

» Photons:
E=hw=hck=hc/1 ~14

» Massive particles:
E=p?/2m=#°k?/2m=h/2mA* -1

10 \

5 | (Piotons

\\</ | Reurors)
3 | | _[Fiectrons)

S

1 5 10 50 100

Energy——= /keV (Photons)]
/0.01 meV(Neutrons)]

(/100eV (Electrons) |

.O -
o o
/
/)

~

/N

0.1
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Probes of matter

» The energy ranges shown correspond to:
Photons: x-rays region
Neutron: Thermal neutron regime
Electrons: Low energy regime.

» Note that electron microscopy generally uses
much higher energies (~100keV) and hence
shorter wavelengths.

® Ewald construction
» Scattering geometry is visualised easily by the
Ewald construction.
» Start by drawing k; to origin (defines the point p).
>k lies on circle centred at P. (Eg. shown green.)

Experiment
(same geometry)

Ewald sphere

k/2n Detector

Sample

29
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Diffraction geometry

" Scattering angles
» The size of the Ewald sphere, in relation to
the scattering function F(u) determines the
scattering geometry

® Neutrons, X rays, low energy electrons

» The scale of k/27 and A u,
F(u) are similar. So,
all scattering angles
observed.

Shading indicates region »ux
where F(u) is significant O

» As in a microscope

» The scale of k/2ris
much greater than
F(u). So,only small
scattering angles
occur. O 4

Cowley section 5.6 30

15
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Schematic experiments lllustration: electrons
b 4 rays ") ow energy electron diffraction (LEED)
» Large angle scattering; typically multi-detector » Energies of 100-500eV give wavelengths <1A.

Monochromator Detector » scattering through large angles is possible
' » Energies correspond to short mean-free paths in a
I solid, hence used as a surface structure tool.

sample
fluorescent

Synchrotron screen - grids

" High energy electrons: Transmission
electron microscope (TEM)
» Forward scattering (angles greatly magnified on Electron
the diagram), detection gun

on phosphor screen Sample
Al single crystal

Detector:
video/CCD camer

Objective
Lens

» Energy dependence of the scattered intensity
relates to the structure.

IE)| ,(10) Cu(001)

Projector
Lens

Obs-
(source Williams ervation 100 200 E/eV
and Carter “TEM”) Plane . » Electrons scatter strongly, the kinematic approx-
. . ‘ imation fails, and a “dynamical” analysis is needed
diffraction pattern 31 32
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» Example: f.c.c. (111) surface with and without
adsorbates

» Note:
» 3-fold symmetry in pattern (bulk)
» Change in periodicity due to adsorbate unit cell
> Strong diffraction from high-z substrate
» Weaker features from the lighter adsorbate

33
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