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Part A  ScatteringPart A  Scattering
Probes and phenomenology:

Scattering of electrons, photons and 
neutrons.  Perfect and distorted lattices.

Part B  ExcitationsPart B  Excitations
Electronic properties of solids:

Ultra-violet and x-ray photoemission. Band-Ultra violet and x ray photoemission. Band
structure determination, core-level shifts.

Surfaces and interfaces:  
Surface phenomenology, the effect of a 
surface on a bulk probe.
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Overview, cont..Overview, cont..

Part C  Atomic timePart C  Atomic time-- and lengthand length--scalesscales
Microspcopy:

Structure and spectroscopy ElectronStructure and spectroscopy. Electron 
microscopy; Scanned probe techniques. 
Atomic force microscopy and probes of local 
forces.  Atom manipulation.

Dynamics:
Observation of electronic and atomic motion 
on sub-picosecond time-scales.  Pump probe 
laser methods. Scattering approach for atomic 
motion - spin-echo technique.

Books and sourcesBooks and sources
“Diffraction Physics”, JM Cowley
“Structure and Dynamics”, MT Dove 
“Modern Techniques in Surface Science”, DP 
Woodruff and TA Delchar
“Scanning Probe Microscopy and 
Spectroscopy”, R Wiesendanger
plus recent research papers
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plus recent research papers
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Experiments and Condensed Experiments and Condensed 
Matter PhysicsMatter Physics

Complex systemsLarge scale Small scale

Physics

Complexity does not necessarily imply 
complication: e.g.: emergence of order in 
complex systems.

Complex systemsLarge scale Small scale

Overall aim:Overall aim:
Appreciate the experimental approach to 
characterising and understanding complex 
systems.y

Probes of condensed systems;Probes of condensed systems;
Internal probes:

Important, especially for device 
characterisationcharacterisation.
Usually limited to electrons

Emission
Internal

3

Sample
Internal
probe Transmission

Internal and external probesInternal and external probes

External probesExternal probes
Photons, electrons, neutrons etc….

Emission

Diffraction (elastic scattering)
Inelastic scattering

External
probe

Sample

Transmission

Conductivity

Huge variety of phenomena
In the present course we will:

Concentrate on external probes
Focus on the generality of behaviour.
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Science and technologyScience and technology

Experiment requires technology. Key 
technologies include:

Liquefaction of gases ~1907: low temperatures.
Electronic methods for instrumentation, control 
and, more recently, experimental design.
Vacuum technology: controlled environment for 
samples (e.g. MBE growth) and measurement.
N b L h t tNew probes: Lasers, synchrotrons, etc.

TimeTime--lineline

1900      ‘40      ‘60      ‘80           2000

Synchrotrons
X rays

Reactors         spallation

TEM    SEM    ESEM

Neutrons
Electron
microscopy
Lasers
SPM
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SPM

Instrumental technologyInstrumental technology

Early diffractometersEarly diffractometers
Simple devices, with simple detectors (eg. film 
for X rays). Debye-Scherrer camera for for X rays). Debye Scherrer camera for 
powder diffraction.

X ray beam film stripy film strip

powder sample

Similar devices still used in routine lab-
measurements.

(Photographs, Dove p121)

6

measurements.
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Modern diffractometersModern diffractometers
Complex and specialised functionality
Typically with multiple electronic detectionTypically with multiple, electronic detection.
Usually found at central facilities

Example:Example:
Powder neutron diffractometer at Rutherford 
Appleton Lab.

Plan view

7

Neutron detector array

Source technologySource technology

Early instrumentsEarly instruments
small, low power sources. eg. conventional X-
ray tube.ray tube.
Fixed wavelength, not well monochromated

High power sourcesHigh power sources
For x rays, a synchrotron offer greater 
b i ht t th ith t bl l thbrightness, together with tuneable wavelength 
and improved monochromaticity
Brightness in photons/(s mm2 mrad2) into 
0.1% bandwidth. (Source Duke, Synchrotron radiation).
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Daresbury synchrotronDaresbury synchrotron

ESRF, Grenoble
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Rotating anode
X ray tube
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Part A: ScatteringPart A: Scattering

Probes and phenomenologyProbes and phenomenology
Scattering potentials:

X rays scatter predominantly from electronsX rays scatter predominantly from electrons.
Electrons from charged particles (Coulomb 
interaction)
Neutrons scatter mainly from the nucleus

In most cases the scattering can beIn most cases the scattering can be 
approximated by an assembly of point 
scatterers. A continuous  distribution of scattering 
density can be constructed by integration over 
volume elements.

Scattering and DiffractionScattering and Diffraction
Scattered

wave
Incident

wave

θ
Detector

k

( ) ( ) ( )ikrfiF expexp θ+≈ rk

Wave amplitude

Dove Ch. 6 9

( ) ( )
r

fiF .exp θ+≈ rk

Incident, plane wave
Scattered, spherical wave

Far fieldFar field

We assume the scattering is weak (no multiple 
scattering).
At the detector, far from the scatterer, the 
spherical wave is approximately a plane wave.

Incident
wave

Scattered
wave

kf

T ki th h f i id t d tt d

ki

rj
Origin, O

Taking the phase of incident and scattered wave 
to be zero at the origin,

Incident wave: (incoming)

Scattered wave: (outgoing)
( )jii rk .exp

( )jfj if rkexp −Scattered wave: (outgoing)
Adding the incoming and outgoing phases, the 
wave scattered from scatterer, j, is

( )jfj if rk .exp

( )( ) ( )jjjfij ifif rQrkk .exp.exp =−
kf

10

Scattering vector, Qki

f

Q
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Assembly of scatterersAssembly of scatterers

For a single scatterer:

For an assembly:

( )jj ifF rQ.exp~

( )∑ jj ifF rQ.exp~

Identical scatterers
(all fj the same)

j

( )∑
j

jifF rQ.exp~

Example: Example: Scattering from a lattice
In general the phase factors, Q.r, will add 
randomly unless all are multiples of 2π. For a 
rectangular lattice, cell (a,b,c)g ( )

( )( )

⎧

++

++=

∑
Q

ncQmbQlaQifF

ncmbla

lmn
zyx

j

2

exp~

ˆˆˆ zyxr

W i B tt i

⎪⎩

⎪
⎨

⎧

=
=
=

=
cQ
bQ
aQ

whenexcept

z

y

x

π
π
π

2
2
2

0 and multiples
thereof
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We recognise Bragg scattering.
(Note, the result is true generally, not just in the 
weak scattering limit.)

Kinematic scattering as a Kinematic scattering as a 
Fourier transformFourier transform

Scattered amplitude has two parts:
( )∑

j
jifF rQ.exp~

In the case of a continuous distribution of 
tt h i d it ( ) th

Atomic form factor Structure factor

scatterers, having density, ρ(r), then

This is known as the kinematic approximation.  
It is sef l in the eak scattering limit and is

( ) ( ) rrQr diF j.exp~ ∫ ρ

It is useful in the weak scattering limit and is 
thus good for X rays and neutrons.  As 
electrons scatter more strongly it is usually 
necessary to consider multiple scattering 
(Dynamical scattering theory)(Dynamical scattering theory)
Note the scattered amplitude is the Fourier 
Transform of the distribution of scatterers.

12
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Friedel’s LawFriedel’s Law

If ρ(r) is real (a good approximation for X rays 
away from an absorption energy) So

( ) ( ) ( ) rrQrQ diF j.exp∫= ρ

away from an absorption energy). So, 
replacing Q with – Q,

( ) ( ) ( )
( )Q

rrQrQ
*

.exp

F

diF j

=

−=− ∫ ρ

We measure

hence the diffraction pattern is symmetric 

( ) ( ) ( ) ( ) 2*2 QQQQ −== FFFF

( )QF=

p y
about the origin.  The result is known a 
Friedel’s Law.
Deviations from Friedel’s Law can be 
exploited to aid the determination of complex, 
multi-atom structures. For example, by tuning 
the energy of X rays near to an absorption 
edge,                                       for the 
absorbing atoms. Deviations from symmetry 
i th tt i i t it l l l t t

( ) ( ) ( )rrr ''' ρρρ i+=

Dove sections 6.7, 6.8 13

in the scattering intensity clearly relate to 
these particular atoms.

The phase problemThe phase problem

Since ρ(r) and  F(Q) are related by a Fourier 
transform then knowledge of F(Q), a complex 
function, would give the scattering density 
di l Th h i f i i idirectly. The phase information in F(Q) is not 
present in the quantity we measure, |F(Q)|2.
The phase is, however, the more important 
than the amplitude of F(Q). Example (from 
D 142)Dove. p142).
Consider two digitised characters, I and O, as 
real, 2-D scattering systems.

The corresponding measured intensities,
|F(Q)|2, are

14

Note that there are differences (as expected)
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Phase problem cont..Phase problem cont..

Differences in the phases are more important as 
can be seen by reconstructing the objects by

( ) ( ) ( )( )( )QQQ OII FiFF ∠= exp ±1 f

Lower panel, below, shows the result

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )QQQ

QQQ

IOO

OII

FiFF ∠= exp
p =±1 for

centro-
symmetric

objects

Note the characters are transposed, indicating 
that the (normally absent) phase information 

15

( y ) p
dominates the reconstruction.

Structure from diffractionStructure from diffraction

Overcoming the phase problemOvercoming the phase problem
Structure determination is now a routine process 
and largely an automatic one.g y
Probabilistic rules exist giving phase relations, 
e.g. Sayre’s equation.
For a centrosymmetric structure where,

( ) ( ) ( ) ( ) ( )QQQrr sFF I=⇒−= ρρ
and s(Q)= ±1. It can be shown that, with a high 
probability strong beams, that 

Th if h b d th

( ) ( ) ( ) ( ) ( )QQQrr sFF I⇒ρρ

( ) ( ) ( ) 01 321321 =++=×× qqqqqq ifsss
Thus, if some phases can be guessed others can 
be deduced.  Iteration can lead to a Fourier 
synthesis that solves for all the atoms.
A final stage of refinement optimises the 
structure by minimising differences betweenstructure by minimising differences between 
measured and calculated intensities.
Older methods include Patterson synthesis.  We 
explore the Patterson function in order to see the 
connection between scattering and correlations

16

connection between scattering and correlations 
in space and time.
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Correlation functionsCorrelation functions

Nomenclature:Nomenclature:
For the next section we follow the treatment 
by Cowley (Ch.5 and 12) and use his by Cowley (Ch.5 and 12) and use his 
nomenclature and FT definitions. Specifically:

( )[ ] ( ) [ ] xiuxxfuFxfFT d2exp)( ∫== π

( ) ( )[ ][ ] ( ) [ ] uiuxuFxfFTFTxf d2exp1 ∫ −== − π
Including 2π in the exponent avoids constant 
multipliers in either of the integrals. (see 
Cowley Ch. 2, definitions and transforms)
In terms of our usage so far: Q = 2 π u.

Inverse transform of Intensity, Inverse transform of Intensity, ||FF((uu)|)|22

Using the convolution theorem

( )[ ] ( ) ( )[ ]uuu *121 FFFTFFT ×= −−

( ) ( ) ( ) ( ) ( )rRRrRrr P≡+=−∗= ∫ dρρρρ

Spatial correlation function Patterson Function

Cowley Ch. 5 & 12 17

Assemblies of atomsAssemblies of atoms

Scattering density for an assemblyScattering density for an assembly
If the jth atom has density, ρj(r).
Then the total density isThen the total density is

( ) ( ) ( )j
j

j rrrr −∗= ∑ δρρ
Atom position( ) ( )

( ) ( ) ( ) ( )jiji rrrrrr
rr

−∗−∗−∗

=−∗

∑ δδρρ
ρρ

Typically ρj(r) is approximately gaussian and

( ) ( ) ( ) ( )

( ) ( )[ ] ( )( )ji
ij

ji

ji
ij

ji

rrrrr −−∗−∗= ∑

∑
δρρ

ρρ

A

Typically ρj(r) is approximately gaussian and 
so is ρj∗ρj (though a little broader)

Indicates we have a peak in the 
correlation function at every interatomic 
vector ri-rj and an identical peak at rj-ri .

A

Origin, OOrigin, O

i j p j i

For a dimer and trimer we have:
r1 r2

r  - r1 2
r  - r1 2 r  - r2 1

18

g ,g ,



2/1/2008

10

Time dependent structuresTime dependent structures

44--D Correlation functionD Correlation function
In general structures are not static so we need to 
consider correlations in time and space.consider correlations in time and space.

( ) ( ) ( )
( ) ( )tT

TTtTtP

−−∗=

++= ∫
,,

dd,,,

rr

RRrRr

ρρ

ρρ

and its Fourier transform

( ) ( ) ( )( )∫ ∫ += ttitPF dd.2exp,, 2 rruru νπν

Change in k as a
result of scattering

Change in frequency as
a result of scattering

u is determined by the scattering geometry,
ν is determined by the energy change (ΔE=hν)

19

DiffractionDiffraction

Relationship between 4Relationship between 4--D and 3D and 3--D D 
Patterson functionsPatterson functions

Consider purely elastic scattering (strictConsider purely elastic scattering (strict 
definition of diffraction), so that ν = 0 in the 
previous equation

( ) ( ) ( )∫ ∫= rruru dd.2exp,0, 2 titPF π

( )[ ] ( )∫ ∫
∫ ∫

= rrur d.2expd, ittP π

Diffraction corresponds to scattering from the 
ti f th t t l l ti

Time average of the
4-D Patterson function

time average of the structural correlations.

20
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Probes: X raysProbes: X rays

Scattering strengthScattering strength
The theory has been general in the sense that we 
have only assumed weak scattering.have only assumed weak scattering.
Different probes have different scattering 
mechanisms and are therefore sensitive to 
different aspects of a sample.

X raysX raysX raysX rays
Scattering of X rays is dominated by electrons.
For an electron located at the origin having some 
restoring force (giving it a resonant frequency, 

) A i id t ( ith > )ωo).  An incident wave (with ω > ωo )

undergoes Thomson scattering giving radiation at 
observation point R as

( ){ }k.rEE −= tio ωexp

( ){ }k REE tie i12

1/ l h d t t ib t

( ){ }k.REE −= ti
Rmcos ωψ expsin2

“Scattering strength”
of one electron

ψ = angle between observation
and direction of acceleration
of the electron

Ref: Cowley Chapter 4 21

1/m ensures nuclear charge does not contribute.
Total scattering comes from e- density ρ(r).

Probes: ElectronsProbes: Electrons

ElectronsElectrons
To a good approximation for elastic scattering, 
electrons scatter from the electrostatic potential. electrons scatter from the electrostatic potential. 
Poisson’s equation

Scattering form factor is  a FT of the scattering 

( ) ( ){ }rr ρδ
εε

ρϕ −−=−=∇ Z
oo

12

nucleus
electrons

g g
density (p. 9). i.e. FT of ϕ(r) in the present case.  
Note:

Hence we can take the “scattering density”, in

( ) ( )ϕπϕ FTuiFT 22 2=∇

Hence we can take the scattering density , in 
earlier equations, roughly as the charge in the 
system (electrons and nucleus) remembering that 
there is an additional factor 1/u2.
Different spatial extent of the nuclear and p
electronic charge means that:
Electron charge:

decays slowly with r → scattering localised in u.
Nuclear charge:

22

Nuclear charge:
localised in r → scattering decays slowly with u.  
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Probes: NeutronsProbes: Neutrons

NeutronsNeutrons
The scattering of neutrons is dominated by the 
nuclear forces, hence the main interaction is with nuclear forces, hence the main interaction is with 
the nucleus.
Range of the interaction ~10-15m is much smaller 
than a typical wavelength ~10-10m.  The scattering 
is isotropic (s-wave scattering) and the scattered p ( g)
wave is 

The minus sign is a convention so that b is +ve for 

( )ikr
r
b

s exp−=ψ
scattering length

a repulsive potential.
The scattering length is directly related to the 
scattering probability (no. of scattered neutrons

If the velocity is v, no. passing Incident flux

Ω== dd 2
2

2
2 vb

r
bvdSSv sψ

through areas dS per second is

Cross section is

vv inc ==Φ 2ψ

2 dd vbσ Ω
Total scattering

Squires  "Thermal neutron Scattering" Chapter2 23

22 4
d
d

d
d bbvb

tot πσσ
==

ΩΦ
Ω

=
Ω

Neutron scatteringNeutron scattering

Fermi pseudopotentialFermi pseudopotential
The scattering can be approximated by an 
effective potentialeffective potential

b varies strongly from one element to the next and 
can be either +ve or –ve.

( ) ( )rr δaV = ba ∝

2 b d t i t

1

2

Le
ng

th
/1

0
 m

-1
4

2H 58Ni
60Ni

62Ni

abundant isotopesabundant isotopes

Red points: isotopes often
used for isotopic-substitution
(Meth. Expt. Phys. Vol 23A)

Th t i t l b id d

40                     80
Atomic Number

-1

0

Sc
at

te
rin

g 
L (Meth. Expt. Phys. Vol 23A)

The neutron spin must also be considered.
If the scatterer consists of a single isotope, spin I, 
the neutron-nucleus system has the values I+1/2, I-
1/2, with scattering lengths b+, b-.  In general the 
scattering lengths are different and the scattering is

24

scattering lengths are different and the scattering is 
some kind of average over all possibilities (Unless 
the nuclear spins and/or neutron are polarised)
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Coherent and incoherent Coherent and incoherent 
scatteringscattering

Randomness in the distribution of scattering 
lengths is conventionally dealt with by considering 
the scattering to be composed of a coherent 
f ti d i h t f tifraction and an incoherent fraction.

Coherent scatteringCoherent scattering
This is the scattering from a system consisting of 
identical scatterers having the average scattering g g g
length,   .  The strength of the scattering (cross-
section) is                      and includes all 
interference effects arising from the different 
nuclear positions.

b
( )24 bcoh πσ =

Incoherent scatteringIncoherent scattering
This term is the difference between the ideal 
coherent scattering and the scattering from the 
real system with disorder in the scattering lengths.  y g g
In fact it can be shown that the corresponding 
cross-section is                                  .  Equivalent 
to a sum of intensities from all the nuclei, without 
phase information (no interference).

( ){ }224 bbincoh −= πσ

25

Example: Hydrogen and DeuteriumExample: Hydrogen and Deuterium
Hydrogen (I=1/2):

s=I+1/2=1: (2s+1)=3 : b+ = 1 04x10-14m :

σincoh dominant

s=I+1/2=1: (2s+1)=3 : b = 1.04x10 m :
s=I-1/2= 0: (2s+1)=1 : b- = -4.74x10-14m : 

( ) 228222

14

1043613

1038.0
4
1

4
3

bbb

mbbb

−−+

−−+

×+

×=+=

coherent
incoherent

Deuterium (I=1):

( ) 81043.6
44

mbbb ×=+=

( ) 2282 1081.14 mbcoh
−×== πσ

( ){ } 22822 10584 mbbincoh
−×=−= πσ

σcoh dominant

Deuterium (I 1):
s=I+1/2=3/2: (2s+1)=4 : b+ = 0.95x10-14m :
s=I-1/2=1/2: (2s+1)=2 : b- =  0.10x10-14m : 

141067.0
6
2

6
4 mbbb −−+ ×=+=

coh

coherent
incoherent

( ) 228222 1061.0
6
2

6
4 mbbb −−+ ×=+=

( ) 2282 106.54 mbcoh
−×== πσ

( ){ } 22822 1096.14 mbbincoh
−×=−= πσ

26

Deuterated samples show coherent scattering;
non-deuterated show only incoherent scattering.

( ){ }incoh
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Absorption and resonant Absorption and resonant 
scatteringscattering

Scattering densityScattering density
In most of the discussion so far we have 
taken the scattering strength to be a real taken the scattering strength to be a real 
function.
Reality is more complicated.  For example:

X rays and electrons can excite atoms 
resulting in absorption.g p
Neutrons can scatter resonantly and form a 
compound nucleus.

All these phenomena can be treated by 
allowing the scattering density (or scattering 
length) to become complex.
Usually the complex part is only non-zero in a 
small range of energy (or, equivalently, k).
Provided these regions are avoided in g
experiment the assumption of a real 
scattering density (scattering length) is valid.
Conversely, the effects can be exploited to 
introduce atom-specific information in the 

27

data.

Diffraction geometryDiffraction geometry

Experimental geometry is determined by Experimental geometry is determined by 
the probe characteristics.the probe characteristics.

The wavelength/energy relationship dependsThe wavelength/energy relationship depends 
on the particle:
Photons:

Massive particles:
λω hcckE === hh ~1/λ

Massive particles:
2222 222 λmhmkmpE === h ~1/λ2

10

5

A

Photons

1.0

0.5

W
av

el
en

gt
h/

A

Neutrons

Electrons

0.1

W

1            5   10          50  100
E /k V (Ph t )

28

Energy

/100eV (Electrons)
/0.01meV(Neutrons)/0.01meV(Neutrons)
/keV (Photons)
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Probes of matterProbes of matter

The energy ranges shown correspond to:
Photons:  x-rays region
Neutron: Thermal neutron regime
El t L iElectrons: Low energy regime.
Note that electron microscopy generally uses 
much higher energies (~100keV) and hence 
shorter wavelengths.

Ewald constructionEwald construction
Scattering geometry is visualised easily by the 
Ewald construction.

Start by drawing ki to origin (defines the point p).y g i g ( )
kf lies on circle centred at P. (Eg. shown green.)

Ewald sphere Experiment
(same geometry)

uy

P
k /2i π k /2f π

Sample

Detector

29

ux

O

Diffraction geometryDiffraction geometry

Scattering anglesScattering angles
The size of the Ewald sphere, in relation to 
the scattering function F(u) determines the t e scatte g u ct o (u) dete es t e
scattering geometry

Neutrons, X rays, low energy electronsNeutrons, X rays, low energy electrons
The scale of k/2π and
F(u) are similar So

uy

Shading indicates region

F(u) are similar. So,
all scattering angles
observed.

ux

O

P

Shading indicates region

uy

P

where F(u) is significant

High energy electronsHigh energy electrons
As in a microscope

Owhere F(u) is significant

ux

O

As in a microscope
The scale of k/2π is
much greater than 
F(u). So,only small
scattering angles

Cowley section 5.6 30

O
g g

occur.
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Schematic experimentsSchematic experiments

X raysX rays
Large angle scattering; typically multi-detector

High energ electrons TransmissionHigh energ electrons TransmissionHigh energy electrons: Transmission High energy electrons: Transmission 
electron microscope (TEM)electron microscope (TEM)

Forward scattering (angles greatly magnified on 
the diagram), detection
on phosphor screen Sample

Objective
Lens

Al single crystal

Projector
Lens

Obs-
ti

31

ervation
Plane

(source Williams
and Carter “TEM”)

imagediffraction pattern

Illustration: electronsIllustration: electrons

Low energy electron diffraction (LEED)Low energy electron diffraction (LEED)
Energies of 100-500eV give wavelengths ≤1Å.

scattering through large angles is possiblescattering through large angles is possible
Energies correspond to short mean-free paths in a 
solid, hence used as a surface structure tool.

I

Energy dependence of the scattered intensity 
relates to the structure

Detector:
video/CCD camera k

relates to the structure.

100 200 E/ V

Cu(001)(10)I E( )

32

Electrons scatter strongly, the kinematic approx-
imation fails, and a “dynamical” analysis is needed

100           200      E/eV
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Example: f.c.c. (111) surface with and without 
adsorbates

Note:
3-fold symmetry in pattern (bulk)
Change in periodicity due to adsorbate unit cell
Strong diffraction from high-z substrate

33

g g
Weaker features from the lighter adsorbate


