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» Example: thermal excitation.

» A simple model — uncorrelated motion -
illustrates the two main effects

» Reduction in intensity of diffraction features.

The Debye Waller effect.
» Emergence of diffuse scattering.

» A more realistic model of scattering from
phonons.
» Structure of the diffuse scattering

» Conservation laws for Energy and crystal
momentum

» Phonon dispersion measurement
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“Einstein” model for thermal
vibrations

» Assume each atom has a Gaussian spread
function.

» In 1-D, the time averaged scattering density is
given by the foIIowing convolutions
(x)

)= 2, ()% (20°)  expl-x*/b? }* Y 5(x—na)

p
n
Atom density Gaussian spread | Perfect lattice

» Fourier transform, of this time-independent
function leads to elastic scattering

F(u,0)=F,(u)exp(- z?b?u?)> " 5(u—h/a)

h
(for the Fourier transforms see Cowley Ch.2 eq.
(49) and (61))

» The observed intensity is

F(u,0) =|F,(u)? exp(- 27%b%u?)>" 5(u—h/a)

» Elastic intensity only at positions corresponding to
the average lattice

» Diffracted intensity reduced by a factor depending

on b2, where b is the rms atom displacement.
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Debye Waller factor

» Equipartition of energy gives mean potential

energy = kBT/% Spring constant ]
1
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Diffuse scattering

» To calculate the total scattering (all energy
changes) we need to determine

_[F(U,V)Z dv = jdVH P(r,t)exp(2z(u.r +1t))drdt

» Performing the integration over v first, note
Iexp(27zi m)dv =45(t)

» Total scattering is

_ ” P(r,t)exp(2ziur)s(t)drdt
=IP(r,O)exp(27ziu.r)dr

i.e. the Fourier transform of Patterson function
witht=0.
» What does the Patterson function look like?

» Consider, first, the average charge density of
two 5-fn atoms with a thermal spread given

as above
[p(x)) = 10(x) + S(x—a)} = {#0? ) exple x? /b7
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Spatial correlation at t=0
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Result for a 1-D lattice

> Charge den5|ty exp?) )

> the dlstrlbutlon comes from an ensemble of
shapshots, for example

snapshots
each t=0

i

» The correlatlon function (at t=0) looks like
3(x)
exp(-x3/2b?)

| a a |
0
Note the central peak is a é-function. Each

atom “sees” itself at rest. The Gaussian peaks

at £ a are broadened by convolution.

» Similar arguments give, for a 1-D lattice:

P(x,0)

-4a-3a-2a -a 0 a 2a 3a 4a
» The full expression, including the atomic
charge density is

P(x,0))= p,(X)* p, (= X) P

- 2\ V2 2 \2
* 5(x)+25(x—na)*(27zb ) expf-x2/2b?}
n=0
» Rearranging gives

= p,(X)* p, (- {25 x—na)*(220?) v expi- XZ/ZbZ}}
alln
+5(x)—5(x)* (2207 ) ** expf- x2/2b?}
» Fourier transformation gives the scattered
intensity.

1(u)=FT[P(x,0))]



Diffuse intensity

» The various parts FT as follows:

[po(x)*po(—x):‘Fo‘zJ LZ&(x—na):Zh:&u—h/a)]

alln

[(Zﬁbz)]/2 exp{- x?/2b%}= exp{- 27r2b2u2}] S(x)=1

» Remember the scattered intensity we are
calculating is the intensity (at all energies) as
a function of scattering vector u. Itis

1(u)=|F,[* xexp{-272b%u? > 5(u-h/a)
— h v

+|F,[*[1—exp{- 27%b?u? ]
W

v

diffraction, the
average lattice
gives discrete
peaks, | is as
before (Slide 2)

diffuse scattering,
i.e. at all u values

lf

» The two terms correspond to elastic and
inelastic scattering respectively. We know
this because the first term is identical to the
explicit elastic intensity we determined eatrlier.
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- Pictorially
» Components to the scattering
diffractive
T component |
diffuse
component )
» Measured intensity Elastic
T|(u) scattering |
Inelastic
scattering

» The shape of the diffuse scattering (as well as
the energy loss/gain) depends on the detail of
the model used. In the present case the diffuse
scattering has a Gaussian shape mainly
because we took the motion to be uncorrelated
and of Gaussian form. (Note the intensity
distribution also depends on the atomic form
factor, |F,|?)
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Scattering from phonons

» More realistic treatment of thermal properties

» Emergence of kinematic laws (Conservation
of energy and crystal momentum)
|

p(r,t)=(p(r))+Ap(r 1)

[ average density, time

does not have the
lattice periodicity

independent, with

deviation from average
lattice periodicity

» The correlation function is

P(r,t)=1{{p(r))+Ap(r,t)}={{ p(=r))+ Ap(-r )}
@ @ ® @

=+® +@*® +@*@+@*®J

=0

» To see that the last two terms are zero,
consider, for example, (1)* (4) . The
argument is not obvious.
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OPIOR

[ average atom density

L (p(r)) %ﬂcesii]
—

A
(p(r)) = Ap(=r,—t)={p,(r))* D 6(r-R,)=Ap(-r,~t)

W _
e

®

» The term @ is a superposition of Ap at each
lattice site. Since 4p dos not have the lattice
periodicity and its space and time average is (by
definition) zero, the superposition result in zero,
everywhere.

» Returning to the non-zero terms in the
correlation function

P(r,t)=(p(r))*(p(=r))+Ap(r,t)* Ap(-r,~t)

\ . 7 — 4

periodic and time N
independent

» As before, we have two terms. The first term

gives elastic, diffraction; the second term is the

diffuse, inelastic scattering (calculated below).
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Phonon displacements

» Model the phonon as a longitudinal wave

travelling in the x-direction.
A = Acos2z(Ix—vt)

» For an atom displaced from an average site at
x=X, density p follows from a Taylor expansion

patom(x’t):po(x +A’t)

= p,(X)+ AX, U
» For the lattice, as a whole, the density deviation

D 5(x- na)}Acos 27z(Ix —v,t)

Ap(x,w:{po(x)*

» We can now determine the diffusive, inelastic
scattering contribution from the time dependent
term, , in the correlation function on the
previous page

P,(x,t)=Ap*Ap =

J x)*25(x—na)AcosZﬂ(Ina—vlt)

*p (= 25 X +ma)Acos 2z(Ima—wt)
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» rearranging gives

P,(x,t)=>_> A’cos2z{l(n-m)a-wt}
%[, (%)% 9, (= )% 5(x~(n—m)a)]

which depends only on n-m, so the double
sum can be replaced with a single sum,

P, 0)= NA (0, (0% (X))

+ > 5(x—na)xcos2z{Ix— vt}
» Fourier transformation of this correlation

function leads to the scattered intensity.
2
F(U,V)\ oC

2F (u) 25 (u—h/a),

N

)*5(ui|,viv,)

»the §-fn comb is at v=0 (no time dependence
in that term of the correlation function).

»we have used the general result for the FT of a
derivative: FT[f'(x)]=-2zuF(u).
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Kinematics: phonon scattering

» The expression shows we only get scattered
intensity at discrete values of scattering vector, u,

and at discrete changes in frequency, .
A

o e T
!
<

—>
» We have demonstrated, explicitly, the
conventional laws of conservation in a periodic
system. i.e. Energy and crystal momentum

conservation. They are more often expressed as

Ef = Ei T hH phonon angular frequency]

kf = ki +G+ q<[ phonon wave-vector |

where f is the final state of the scattered particle

and i is the initial state. Note momentum

conservation is usually expressed in term of the

wave vector (related to momentum by p = 7%kK).
» G is a reciprocal lattice vector

» + describes phonon creation and annihilation.
13
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» We have calculated the “diffuse” scattering
(i.e. that deriving from time-dependence of
the scatterers). Scattering, in the case of
single phonons, is not diffuse but discrete.

» It is instructive to compare the result with
our earlier, less realistic, treatment of
thermal effects (result on p.7). Note:
uncorrelated motion (earlier case) leads to
scattering in at all values of u.

» We have discovered that correlations (in x
and t) of the scatterers are exhibited directly
in the distribution of the scattered patrticles.

» Spatial correlations manifest themselves at
specific scattering vectors (u,,uy,U,)

» Temporal correlations manifest themselves
at specific energies (AE =*hw).
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Phonon inelastic scattering

B Schematic spectrum for acoustic branch

A

Scattered
Intensity

»

/ »
» A branch of acoustic phonons is sketched above:

» Elastic diffraction peaks (light blue) have been
added (NB calculation above, was only inelastic)

» Inelastic peaks (red) follow the phonon dispersion
(dark blue)
» Form factor for inelastic scattering ~k2 for small
k. It decreases with F at larger k.
» Energy loss («<0, “Stokes line”) is usually
stronger than energy gain («>0, “anti-Stokes
line”).

Detail:
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lllustration: surface phonons

¥ Surface phonons

» Vibrations localised at a surface require a probe
that scatters strongly from the surface.

» Low energy electrons and atoms are the main
candidates.

» Helium atoms are “light” and scatter mainly
elastically or through single phonon scattering.

» The interaction is only with the outermost surface
layer and are exclusively sensitive to the surface
motion.

» Techniques are similar (though usually cruder)
than the corresponding neutron technology.

» Eg. Energy changes are usually measured by
time of flight methods.

» Incident beam converted to pulse with a
mechanical chopper

» Time to reach detector measured

Beam
chopper Sample Detector
I — =
| | ‘ ]

t t 16
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Phonons on NiO(100)
—Parallel to surface

» kinematics

E, =E, +AE AK =K, sing; —k;sin 6,
AE = E ((k /& F -1) Kk, /K, _sing +AK/k
o sin 9,

; 2
AE = E{(sm ei_+ AK/kiJ _1]
sin g,

" Experiment Schematic
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