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Frontiers of Experimental Frontiers of Experimental 
Condensed Matter PhysicsCondensed Matter Physics

Part A Scattering:Part A Scattering:

Section 2: Dynamical structuresSection 2: Dynamical structuresSection 2:  Dynamical structuresSection 2:  Dynamical structures

Example:  thermal excitation.
A simple model – uncorrelated motion -
ill t t th t i ff tillustrates the two main effects

Reduction in intensity of diffraction features.  
The Debye Waller effect.
Emergence of diffuse scattering.

A more realistic model of scattering from 
phonons. 

Structure of the diffuse scattering
Conservation laws for Energy and crystal 
momentum
Phonon dispersion measurement
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“Einstein” model for thermal “Einstein” model for thermal 
vibrationsvibrations

Each atom vibrates independentlyEach atom vibrates independently
Assume each atom has a Gaussian spread 
function.
In 1-D, the time averaged scattering density is 
given by the following convolutions

( ) ( ) ( ) { } ( )∑ −∗−∗=
−

n
o naxbxbxx δπρρ 22212 exp

Fourier transform, of this time-independent 
function leads to elastic scattering

n

Atom density Gaussian spread Perfect lattice

(for the Fourier transforms see Cowley Ch.2 eq. 
(49) and (61))

( ) ( ) ( ) ( )∑ −−=
h

o ahuubuFuF /exp0, 222 δπ

The observed intensity is

Elastic intensity only at positions corresponding to 
the average lattice

( ) ( ) ( ) ( )∑ −−=
h

o ahuubuFuF /2exp0, 22222 δπ

2

the average lattice
Diffracted intensity reduced by a factor depending 
on b2, where b is the rms atom displacement. 
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Debye Waller factorDebye Waller factor

Spring constant

Classical 1Classical 1--D harmonic oscillatorD harmonic oscillator
Equipartition of energy gives mean potential 
energy = kBT/2. Spring constante e gy kB /

<x2> ~ b2, hence b2 ~ T and

TkxkU B2
1

2
1 2 ==

( ) ( )22 exp0, TuuF −∝, ( ) ( )p,
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Note:
Dependence on T;
Dependence on u through 
n in (n00).
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~as predicted
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Redrawn from Phys Rev 152 591 (1966)

Diffuse scatteringDiffuse scattering

Where does the lost intensity go?Where does the lost intensity go?
To calculate the total scattering (all energy 
changes) we need to determinechanges) we need to determine

Performing the integration over ν first, note

( ) ( ) ( )( )∫ ∫∫∫ += ttitPF dd.2exp,dd, 2 rruru νπννν

( ) ( )tti δννπ =∫ d2exp

Total scattering is

( ) ( )tti δννπ =∫ d2exp

( ) ( ) ( ) ( )∫ ∫= rruru dd.2exp, ttitPI δπ

i.e. the Fourier transform of Patterson function 
with t = 0.

( ) ( )∫= rrur d.2exp0, iP π

What does the Patterson function look like?
Consider, first, the average charge density of 
two  δ-fn atoms with a thermal spread given 
as above

{ }
4

( ) ( ) ( ){ } ( ) { }{ }22212 exp bxbaxxx −∗−+=
−

πδδρ
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Spatial correlation at t=0Spatial correlation at t=0

Charge density

ρ
exp(-x2/b2)

the distribution comes from an ensemble of 
snapshots, for example

a

snapshots,
each t=0

a

snapshots,
each t=0

The correlation function (at t=0) looks like

P( 0)
exp(-x2/2b2)

δ(x)

Note the central peak is a δ-function. Each

a a

P(x,0)

0
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Note the central peak is a δ function.  Each 
atom “sees” itself at rest.  The Gaussian peaks 
at ± a are broadened by convolution.

Result for a 1Result for a 1--D latticeD lattice

Similar arguments give, for a 1-D lattice:

P(x,0)

Th f ll i i l di th t i
-a-2a-3a-4a a 2a 3a 4a

( , )

0
The full expression, including the atomic 
charge density is

( ) ( ) ( )

( ) ( ) ( ) { }⎬⎫⎨
⎧

−∗=

−∑ 22212 22

)0,

bb

xxxP oo

δδ

ρρ

Rearranging gives

( ) ( ) ( ) { }
⎭
⎬
⎫

⎩
⎨
⎧ −∗−+∗

≠
∑ 222

0
2exp2 bxbnaxx

n
πδδ

( ) ( ) ( ) ( ) { }22212 2exp2 bxbnaxxx oo ⎥
⎦

⎤
⎢
⎣

⎡
−∗−∗−∗=

−∑ πδρρ

Fourier transformation gives the scattered 
intensity.

( ) { }

( ) ( ) ( ) { }22212 2exp2 bxbxx

nall
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−

∑

πδδ
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intensity.

( ) ( )[ ])0,xPFTuI =
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Diffuse intensityDiffuse intensity

The various parts FT as follows:
( ) ( ) 2

ooo Fxx ⇒−∗ ρρ ( ) ( )∑∑ −⇒−
hnall

ahunax δδ

Remember the scattered intensity we are 
calculating is the intensity (at all energies) as 

f ti f tt i t It i

( ) 1⇒xδ( ) { } { }22222212 2exp2exp2 ubbxb ππ −⇒−
−

a function of scattering vector u.  It is

( ) { } ( )∑ −×−×=
h

o ahuubFuI δπ 2222 2exp

{ }[ ]2222 21 bF { }[ ]2222exp1 ubFo π−−+

diffraction, the
average lattice
gives discretediffuse scattering,

The two terms correspond to elastic and 
inelastic scattering respectively.  We know 

g
peaks, I is as

before (Slide 2)
i.e. at all u values

7

g p y
this because the first term is identical to the 
explicit elastic intensity we determined earlier.

PictoriallyPictorially
Components to the scattering

diffractive
I(u)

u
diffuse

component

component

Measured intensity
I(u)

Elastic
scattering

Inelastic
scattering

The shape of the diffuse scattering (as well as 
the energy loss/gain) depends on the detail of 
th d l d I th t th diff

u scattering

the model used.  In the present case the diffuse 
scattering has a Gaussian shape mainly 
because we took the motion to be uncorrelated 
and of Gaussian form.  (Note the intensity 
distribution also depends on the atomic form

8

distribution also depends on the atomic form 
factor, |Fo|2)
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Scattering from phononsScattering from phonons

Lattice with a periodic distortionLattice with a periodic distortion
More realistic treatment of thermal properties
Emergence of kinematic laws (ConservationEmergence of kinematic laws (Conservation 
of energy and crystal momentum)

Time dependent distortionTime dependent distortion
( ) ( ) ( )tt ,, rrr ρρρ Δ+=

Th l ti f ti i

( ) ( ) ( )
average density, time

independent, with
lattice periodicity

deviation from average
does not have the
lattice periodicity

The correlation function is

( ) ( ) ( ){ } ( ) ( ){ }tttP −−Δ+−∗Δ+= ,,, rrrrr ρρρρ
1 32 4

=      ∗ +      ∗ +       ∗       +       ∗

To see that the last two terms are zero, 
id f l Th

1 3 2 4 1 4 2 3

=0

9

consider, for example,        ∗ .  The 
argument is not obvious.

1 4

∗ is1 4

∑

average atom density
lattice sites( )rρ

Th t i iti f Δ t h

( ) ( ) ( ) ( ) ( )tt
n

no −−Δ∗−∗=−−Δ∗ ∑ ,, rRrrrr ρδρρρ

A

The term        is a superposition of Δρ at each 
lattice site.  Since Δρ dos not have the lattice 
periodicity and its space and time average is (by 
definition) zero, the superposition result in zero, 
everywhere

A

everywhere.
Returning to the non-zero terms in the 
correlation function
( ) ( ) ( ) ( ) ( )tttP −−Δ∗Δ+−∗= ,,, rrrrr ρρρρ

A b f h t t Th fi t t

periodic and time
independent ∗∗

10

As before, we have two terms.  The first term 
gives elastic, diffraction; the second term is the 
diffuse, inelastic scattering (calculated below).
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Phonon displacementsPhonon displacements

Model the phonon as a longitudinal wave 
travelling in the x-direction.

( )tlxA lνπ −=Δ 2cos
For an atom displaced from an average site at 
x=X, density ρ follows from a Taylor expansion

( ) ( )
( ) ( ) +Δ+=

Δ+= oatom

tXX

tXtx
'

,,

ρρ

ρρ

For the lattice, as a whole, the density deviation 
is

( ) ( ) L+Δ+=
= Xxoo tXX , ρρ

( ) ( ) ( ) ( )tlxAnaxxtx lνπδρρ −⎬
⎫

⎨
⎧ −∗=Δ ∑ 2cos, '

We can now determine the diffusive, inelastic 
scattering contribution from the time dependent 
term in the correlation function on the

( ) ( ) ( ) ( )tlxAnaxxtx l
n

o νπδρρ
⎭
⎬

⎩
⎨Δ ∑ 2cos,

∗∗term,     , in the correlation function on the 
previous page

∗

( )
( ) ( ) ( )tnalAnaxx

txP

lo

d

νπδρ

ρρ

−−∗

=Δ∗Δ=

∑ 2cos

,
'
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( ) ( ) ( )

( ) ( ) ( )tmalAmaxx l
m

o

l
n

o

νπδρ

ρ

−+∗−∗ ∑

∑
2cos'

diffuse

rearranging gives
( ) ( ){ }tamnlAtxP

n m
ld −−= ∑∑ νπ2 2cos,

which depends only on n-m, so the double 
sum can be replaced with a single sum,

( ) ( ) ( )( )[ ]amnxxx oo −−∗−∗× δρρ ''

( ) ( ) ( )( )NAtP ''2( ) ( ) ( )( )xxNAtxP ood −∗= 2, ρρ

( ) { }∑ −×−∗
n

ltxlnax νπδ 2cos

Fourier transformation of this correlation 
function leads to the scattered intensity.

( ) ∝uF ν, 2

the δ -fn comb is at ν = 0 (no time dependence 
in that term of the correlation function).

( ) ( )( ) ( )∑ ±±∗−
h

lluahuuuF ννδνδπ ,,2 2

12

we have used the general result for the FT of a 
derivative:  FT[f’(x)]=-2πiuF(u).
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Kinematics: phonon scatteringKinematics: phonon scattering

Energy & crystal momentum conservationEnergy & crystal momentum conservation
The expression shows we only get scattered 
intensity at discrete values of scattering vector, u, te s ty at d sc ete a ues o scatte g ecto , u,
and at discrete changes in frequency, νl.

We have demonstrated, explicitly, the 
conventional laws of conservation in a periodic 
system. i.e. Energy and crystal momentum 
conservation.  They are more often expressed as

qGkk ±+=

±=

if

if EE ωh phonon angular frequency

phonon wave-vector

where f is the final state of the scattered particle 
and i is the initial state.  Note momentum 
conservation is usually expressed in term of the 
wave vector (related to momentum by ).

qif

kp h=

13

wave vector (related to momentum by              ).
G is a reciprocal lattice vector
± describes phonon creation and annihilation. 

kp h

Notes:Notes:
We have calculated the “diffuse” scattering 
(i.e. that deriving from time-dependence of ( g p
the scatterers). Scattering, in the case of 
single phonons, is not diffuse but discrete.

It is instructive to compare the result with 
our earlier, less realistic, treatment of 
thermal effects (result on p.7).  Note: 
uncorrelated motion (earlier case) leads to 
scattering in at all values of u.

We have discovered that correlations (in x
and t) of the scatterers are exhibited directly 
in the distribution of the scattered particles.

S ti l l ti if t th l tSpatial correlations manifest themselves at 
specific scattering vectors (ux,uy,uz)
Temporal correlations manifest themselves 
at specific energies  (                     ).ωh±=ΔE

14
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Phonon inelastic scatteringPhonon inelastic scattering

Schematic spectrum for acoustic branchSchematic spectrum for acoustic branch
k

Scattered
IntensityIntensity

hω

A branch of acoustic phonons is sketched above:
Elastic diffraction peaks (light blue) have been 
added (NB calculation above, was only inelastic)
Inelastic peaks (red) follow the phonon dispersion p ( ) p p
(dark blue)

Form factor for inelastic scattering ~k2 for small 
k.  It decreases with F at larger k.
Energy loss (ω<0, “Stokes line”) is usually 
t th i ( 0 “ ti St k

Detail:

15

stronger than energy gain (ω>0, “anti-Stokes 
line”).

Illustration: surface phononsIllustration: surface phonons

Surface phononsSurface phonons
Vibrations localised at a surface require a probe 
that scatters strongly from the surface.that scatters strongly from the surface.
Low energy electrons and atoms are the main 
candidates.
Helium atoms are “light” and scatter mainly 
elastically or through single phonon scatteringelastically or through single phonon scattering.
The interaction is only with the outermost surface 
layer and are exclusively sensitive to the surface 
motion.
Techniques are similar (though usually cruder)Techniques are similar (though usually cruder) 
than the corresponding neutron technology.
Eg. Energy changes are usually measured by 
time of flight methods. 

Incident beam converted to pulse with aIncident beam converted to pulse with a 
mechanical chopper
Time to reach detector measured

Beam
chopper Sample                 Detector

16t
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Phonons on NiO(100)Phonons on NiO(100)
P ll l t f
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f

ii
if kk

θsin
=( )( )ifi

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ+
=Δ 1

sin
sin

2

f

ii
i

kKEE
θ

θ
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