Frontiers of Experimental Condensed Matter Physics

Part A Scattering:

Section 2: Dynamical structures

- > Example: thermal excitation.
- A simple model uncorrelated motion illustrates the two main effects
 - Reduction in intensity of diffraction features. The Debye Waller effect.
 - Emergence of diffuse scattering.
- A more realistic model of scattering from phonons.
 - Structure of the diffuse scattering
 - Conservation laws for Energy and crystal momentum

1

> Phonon dispersion measurement

"Einstein" model for thermal vibrations

Each atom vibrates independently

- Assume each atom has a Gaussian spread function.
- In 1-D, the time averaged scattering density is given by the following convolutions

$$\langle \rho(x)\rangle = \rho_o(x) * (\pi b^2)^{-1/2} \exp\{-x^2/b^2\} * \sum_n \delta(x-na)$$

Atom density | | Gaussian spread

Perfect lattice

Fourier transform, of this time-independent function leads to elastic scattering

$$F(u,0) = F_o(u) \exp(-\pi^2 b^2 u^2) \sum_{h} \delta(u - h/a)$$

(for the Fourier transforms see Cowley Ch.2 eq. (49) and (61))

The observed intensity is

$$|F(u,0)|^{2} = |F_{o}(u)|^{2} \exp(-2\pi^{2}b^{2}u^{2}) \sum_{h} \delta(u-h/a)$$

- Elastic intensity only at positions corresponding to the average lattice
- > Diffracted intensity reduced by a factor depending on b^2 , where b is the rms atom displacement.

2

Debye Waller factor

3

Redrawn from Phys Rev 152 591 (1966)

Diffuse scattering

as above

$$\langle \rho(x) \rangle = \{\delta(x) + \delta(x-a)\} * \{(\pi b^2)^{-1/2} \exp\{-x^2/b^2\}\}$$

Spatial correlation at t=0

Result for a 1-D lattice

Note the central peak is a δ -function. Each atom "sees" itself at rest. The Gaussian peaks at $\pm a$ are broadened by convolution.

Diffuse intensity

The two terms correspond to *elastic* and *inelastic* scattering respectively. We know this because the first term is identical to the explicit elastic intensity we determined earlier.

Pictorially Components to the scattering I(u) I(u) diffractive component diffuse component Measured intensity Elastic scattering Inelastic scattering

The shape of the diffuse scattering (as well as the energy loss/gain) depends on the detail of the model used. In the present case the diffuse scattering has a Gaussian shape mainly because we took the motion to be uncorrelated and of Gaussian form. (Note the intensity distribution also depends on the atomic form factor, $|F_0|^2$)

Scattering from phonons

Lattice with a periodic distortion

- More realistic treatment of thermal properties
- Emergence of kinematic laws (Conservation of energy and crystal momentum)

Time dependent distortion

$$\rho(\mathbf{r},t) = \langle \rho(\mathbf{r}) \rangle + \Delta \rho(\mathbf{r},t)$$

average density, time independent, with lattice periodicity deviation from average does not have the lattice periodicity

The correlation function is

 $P(\mathbf{r},t) = \{ \langle \rho(\mathbf{r}) \rangle + \Delta \rho(\mathbf{r},t) \} * \{ \langle \rho(-\mathbf{r}) \rangle + \Delta \rho(-\mathbf{r},-t) \}$ = (1*(3) + (2)*(4) + (1*(4) + (2)*(3)) = 0

To see that the last two terms are zero, consider, for example, 1 * 4. The argument is not obvious.

- The term (A) is a superposition of $\Delta \rho$ at each lattice site. Since $\Delta \rho$ dos not have the lattice periodicity and its space and time average is (by definition) zero, the superposition result in zero, everywhere.
- Returning to the non-zero terms in the correlation function

$$P(\mathbf{r},t) = \langle \rho(\mathbf{r}) \rangle * \langle \rho(-\mathbf{r}) \rangle + \Delta \rho(\mathbf{r},t) * \Delta \rho(-\mathbf{r},-t)$$
periodic and time
independent
*

As before, we have two terms. The first term gives elastic, diffraction; the second term is the diffuse, inelastic scattering (calculated below).

Phonon displacements

Model the phonon as a longitudinal wave travelling in the x-direction.

$$\Delta = A\cos 2\pi (lx - v_l t)$$

For an atom displaced from an average site at x=X, density ρ follows from a Taylor expansion

$$\rho_{atom}(x,t) = \rho_o(X + \Delta, t)$$
$$= \rho_o(X) + \Delta(X,t)\rho'_o\Big|_{x=X} + \cdots$$

For the lattice, as a whole, the density deviation is

$$\Delta \rho(x,t) = \left\{ \rho_o'(x) * \sum_n \delta(x - na) \right\} A \cos 2\pi (lx - v_l t)$$

We can now determine the diffusive, inelastic scattering contribution from the time dependent term, *, in the correlation function on the previous page

$$P_{d}(x,t) = \Delta \rho * \Delta \rho =$$

$$\rho_{o}(x) * \sum_{n} \delta(x-na) A \cos 2\pi (lna-v_{l}t)$$

$$* \rho_{o}(-x) * \sum_{m} \delta(x+ma) A \cos 2\pi (lma-v_{l}t)$$
11

rearranging gives $P_{d}(x,t) = \sum_{n} \sum_{m} A^{2} \cos 2\pi \{l(n-m)a - v_{l}t\} \\ \times \left[\rho_{o}(x) * \rho_{o}(-x) * \delta(x - (n-m)a)\right]$ which depends only on n-m, so the double sum can be replaced with a single sum, $P_{d}(x,t) = NA^{2}(\rho_{o}(x) * \rho_{o}(-x))$ * $\sum_{n} \delta(x-na) \times \cos 2\pi \{lx-v_lt\}$ > Fourier transformation of this correlation function leads to the scattered intensity. $|F(u,v)|^2 \propto$ $|2\pi uF(u)|^2 \sum \delta((u-h/a),v) * \delta(u\pm l,v\pm v_l)$ \succ the δ -fn comb is at $\nu = 0$ (no time dependence in that term of the correlation function). > we have used the general result for the FT of a derivative: $FT[f'(x)] = -2\pi i u F(u)$.

Kinematics: phonon scattering

- Energy & crystal momentum conservation
 - The expression shows we only get scattered intensity at discrete values of scattering vector, u, and at discrete changes in frequency, v_l.

We have demonstrated, explicitly, the conventional laws of conservation in a periodic system. i.e. Energy and crystal momentum conservation. They are more often expressed as $E_f = E_i \pm \hbar \omega$ phonon angular frequency

 $\mathbf{k}_{f} = \mathbf{k}_{i} + \mathbf{G} \pm \mathbf{q}$ phonon wave-vector

where *f* is the final state of the scattered particle and *i* is the initial state. Note momentum conservation is usually expressed in term of the wave vector (related to momentum by $\mathbf{p} = \hbar \mathbf{k}$).

- **G** is a reciprocal lattice vector
- > ± describes phonon creation and annihilation.

13

Notes:

- We have calculated the "diffuse" scattering (i.e. that deriving from time-dependence of the scatterers). Scattering, in the case of single phonons, is not diffuse but discrete.
- It is instructive to compare the result with our earlier, less realistic, treatment of thermal effects (result on p.7). Note: uncorrelated motion (earlier case) leads to scattering in at all values of u.
- We have discovered that correlations (in x and t) of the scatterers are exhibited directly in the distribution of the scattered particles.
 - Spatial correlations manifest themselves at specific scattering vectors (u_x, u_y, u_z)
 - > Temporal correlations manifest themselves at specific energies ($\Delta E = \pm \hbar \omega$).

Phonon inelastic scattering

- A branch of acoustic phonons is sketched above:
 - Elastic diffraction peaks (light blue) have been added (NB calculation above, was only inelastic)
 - Inelastic peaks (red) follow the phonon dispersion (dark blue)
- Detail:
- > Form factor for inelastic scattering $\sim \mathbf{k}^2$ for small **k**. It decreases with F at larger **k**.

15

 \geq Energy loss ($\omega < 0$, "Stokes line") is usually stronger than energy gain ($\omega > 0$, "anti-Stokes" line").

Illustration: surface phonons

Surface phonons

- Vibrations localised at a surface require a probe that scatters strongly from the surface.
- \succ Low energy electrons and atoms are the main candidates.
- Helium atoms are "light" and scatter mainly elastically or through single phonon scattering.
- The interaction is only with the outermost surface layer and are exclusively sensitive to the surface motion.
- Techniques are similar (though usually cruder) than the corresponding neutron technology.
- Eq. Energy changes are usually measured by time of flight methods.
 - Incident beam converted to pulse with a mechanical chopper
 - Time to reach detector measured Beam

