Frontiers of Experimental Condensed Matter Physics

Part B: Excitations

- Electronic structure:
 - Revision of basic electronic properties
 - Atomic character
 - Bands and bandwidth
 - Processes and nomenclature.

X rays

- Spectroscopy based on absorption
 - Structure from XAS and EXAFS
- Photoemission and electron spectroscopies
 - Photoemission processes
 - >Auger and inelastic events
 - ≻X rays: XPS
 - Core-level spectroscopy.
 - Core shifts, final state effects
 - Surface core-level shifts.
 - Ultraviolet spectroscopy: UPS
 - >Kinematics, determination of band-structures
 - Surfaces and surface states
 - Photoelectron microscopy.

Atomic states

Solids

- The electronic character of the solid derives in large part form the atomic states of the constituent atoms.
- Many, general aspects of the electronic properties can be understood from the basic properties of hydrogenic orbitals and bonding in the independent electron approximation.

Atoms:

- Hydrogenic wavefunctions:
 - Quantum numbers:
 - n I m principal projection of I angular momentum (s,p,d...)
 - For hydrogen (z=1), the value of I and m does not affect the energy

Hydrogenic states

- *z*>1
 - In atoms heavier than hydrogen the *l*-degeneracy breaks down.

Note:

- As *z* increases penetration of wavefunction tail into the core lowers the binding energy.
 (Hence the *n* = 3 levels for Na overlap with the *n* = 2 levels in Li)
- The s-p gap for a given n increases with z. Hence, sp hybrids are more important in Gp. IV solids (Si, Ge) than Gp. VII (CI, Br)

Spatial extent of orbitals

- Spatial extent of the wavefunctions is determined by their I-value.
- For example: hydrogen (again):

- Spatial extent increases with n, an obvious consequence of orthogonality.
- Higher *l*-values are more compact than lower *l*, for a given *n*. This too is a consequence of orthogonality. The angular variation in higher *l*-values allows orthogonality with the lower *n*states without the need to expand in *r*.
- The spatial extent of an orbital determines the overlap with neighbouring atoms

Overlap and bandwidth

Tight binding model

- The simplest and most intuitive model describing the electronic structure of a solid comes from tight-binding theory.
- Atomic orbits are used to construct Bloch states.
- First write the wavefunction, for a Bloch state, labelled, k, as a sum of functions on lattice sites, j.

$$\psi_{\mathbf{k}}(\mathbf{r}) = \sum_{j} \exp(i\mathbf{k}\cdot\mathbf{r}_{j})\varphi(\mathbf{r}-\mathbf{r}_{j})$$

- > The expression defines $\phi(r)$, known as a Wannier function.
- It is easy to show this has the correct, Bloch form

$$\psi_{\mathbf{k}}(\mathbf{r} + \mathbf{R}) = \sum_{j} \exp(i\mathbf{k} \cdot \mathbf{r}_{j})\varphi(\mathbf{r} + \mathbf{R} - \mathbf{r}_{j})$$

= $\exp(i\mathbf{k} \cdot \mathbf{R})\sum_{j} \exp(i\mathbf{k} \cdot (\mathbf{r}_{j} - \mathbf{R}))\varphi(\mathbf{r} - (\mathbf{r}_{j} - \mathbf{R}))$
= $\exp(i\mathbf{k} \cdot \mathbf{R})\psi_{\mathbf{k}}(\mathbf{r})$
simply another
lattice vector, r_{m} , say

Tight-binding model

 $ightarrow \phi(r)$ can be represented as a sum over atomic states

$$\varphi(\mathbf{r}) = \sum_{nlm} c_{nlm} \varphi_{nlm}(\mathbf{r}) \approx \varphi^o(\mathbf{r})$$

- The approximation, above, uses a single atomic state. It is the simplest and is useful provided the state is well localised.
- > Then the energy of the state, k is

$$E_{\mathbf{k}} = \langle \psi_{\mathbf{k}} | H | \psi_{\mathbf{k}} \rangle = \sum_{j} \sum_{m} \exp(i\mathbf{k} \cdot (\mathbf{r}_{j} - \mathbf{r}_{m})) \langle \varphi_{m}^{o} | H | \varphi_{j}^{o} \rangle$$

For simplicity take a 1-D solid with atoms at r = ma.

state, ϕ^{o} , at site m

We can neglect all terms except the nearest neighbours j=m, m±1, since the matrix elements decrease rapidly with the separation of the wavefunction centres. Hence we get 3 terms

$$E_{k} = \alpha \exp(ik.0) + \beta \exp(ika) + \beta \exp(-ika)$$

$$\alpha = \langle \varphi_{m}^{o} | H | \varphi_{m}^{o} \rangle$$

$$\beta = \langle \varphi_{m}^{o} | H | \varphi_{j}^{o} \rangle$$
overlap integral

3

Energy bands

The energy band becomes

 $E_k = \alpha + 2\beta \cos(ka)$

number of nearest neighbours

- Width of band directly proportional to the orbital overlap, β , and the bandwidth $\Delta E = 4\beta$.
- Note the factor 2 arises because we have two neighbours contributing. The analysis can easily be extended to 3-D. Assuming a cubic crystal we will have 6 neighbours (2 in x-direction, 2 in y and 2 in z). The band structure is

$$E_{k} = \alpha + 2\beta \left\{ \cos(k_{x}a) + \cos(k_{y}a) + \cos(k_{z}a) \right\}$$

- The bandwidth is now $\Delta E = 12\beta$.
- We note that the other factor in determining the bandwidth is the number of neighbours (coordination number).

Shells and bands

- Spatially extended atomic states gives overlap and hence broad bands.
 - \gg s-p bands typically 10-20eV
 - d bands usually narrower since d -states are more compact (less overlap)

Core states

- Highly compact with negligible overlap
 - bandwidth is negligible and the states are essentially the same as atomic states.

Generic density of states

Core levels

The measured binding energy of core levels of the elements are*:

Core level spectroscopies

X ray absorption / photoemission

If an incident x-ray has sufficient energy to excite a core electron into an empty state the x-ray is absorbed and (possibly) a photoelectron generated. X rays

Sample Electrons

Both the absorption process and the photoelectron energy provide spectroscopic information about a sample.

X ray Absorption (XAS, EXAFS)

- XAS x ray, absorption spectroscopy; EXAFS extended, x ray, absorption fine structure.
- An isolated atom gives a simple absorption edge

X ray absorption

The absorption spectrum for an atom gives little information of value.

Absorption in a solid

- In a solid, the process is more complex and interesting.
- The outgoing photoelectron scatters from nearby atoms and interferes with the outgoing wave. The scattering defines the final state into which the transition occurs and, therefore, affects the transition probability.
- The transition rate, μ , is given by Fermi's Golden rule:

The wavelength of the x ray exceeds the spatial extent of the initial, core state. So the dipole approximation is valid and the matrix elements become $\langle f | H_i | i \rangle \approx \langle f | \mathbf{e.r} | i \rangle$ (A) polarisation vector for the x-ray 11

Electron backscattering

Note the spherical wave is travelling through a region where the potential varies strongly so that phase shifts arise because of the potentials, as well as the distances travelled.

XAS, EXAFS

Practical approach

In addition to the structural information, we need to include thermal vibrations (through a Debye-Waller type expression) and inelastic scattering of the photoelectrons (through a mean-free-path)
 The usual expression used to analyse experiment is

The thermal vibration term contains an "effective" vibration amplitude, σ . In the harmonic approximation, $\sigma^2 \propto T$ (Debye-Waller type behaviour). However, we are sensitive to changes in the interatomic distance, which is unaffected by long-wavelength, acoustic phonons.

14

traversing potential V_B . Thus, the reflected amplitude at site A is

- Equations (A) and (B) contain the physics that allows the method to be used as a local, structural probe. Specifically
 - A shows that there is a polarisation dependence to the absorption
 - B) shows there are interference terms with period 2kR, where *R* is the distance to the neighbour.

Inelastic scattering

Attenuation length

- The main contributions to inelastic scattering are single particle events and plasmon excitation. The latter tends to dominate at higher energies.
- There is a "universal curve" (with some scatter) that characterises all materials.

- For typical electron energies (10-1000eV), the attenuation length is extremely small ~10Å.
 - Interference effects are only appreciable for local scatterers.
 - Photoelectrons that leave the sample come from the near surface region.

Methods

Bulk and surface studies

The probe can be made sensitive either to the bulk or to the surface by changing the way absorption is measured.

- Direct measure of x-ray flux transmitted gives a bulk probe.
- Measuring the photoelectron signal gives a surface probe.
- Experiment typically scans the x ray wavelength by monchromating the "white" synchrotron radiation. Crystal monochromater relies on diffraction (angle relates to wavelength)
 - Need to normalise signal to the incident flux (varies with wavelength (and time).

Examples

Simple metals

- Chosen to illustrate the method (See Rehr and Albers, Rev Mod Phys 72, (2000) 621)
- Absorption edges

x-ray energy (log scale)

After removal of edge itself one is left with the fine structure. (Note the temperature dependence)

17

Simplest analysis is achieved by Fourier.

Transforming (see fig.).

- Spacing of shells given directly.
- More sophisticated modelling, using multiple scattering theory also possible – not shown.

Recent example (Yaakobi et al. PRL 92 (2004) 095504) EXAFS from shocked Ti.

Multiple laser beams: some generate x-rays in an imploded target; others shock the Ti sample

X-ray source Radiation Ti sample EXAFS imloped target shield 10 m thick spectrometer Results indicate a phase change from α -Ti to ω -Ti. (The variety of nearest-neighbour distances in ω -Ti, explains the rapid decay in oscillations – it is not due to high *T* in the shock region)

Absorption vs diffraction

Why use x ray absorption?

- In principle all structural information is present in the x ray diffraction pattern. In practice, the combination of diffraction (sensitive to medium and long range order) with a probe giving nearest neighbour bond-angles and lengths is valuable.
- For example, disordered structures clearly benefit from a local probe.
- There are other subtleties; Take, for example, a structure with multiple conformations. Diffraction sees the average lattice

A further benefit of EXAFS is that it can be made surface sensitive (by measureing the photoelectron yield) and hence give bond lengths (and angles) for surface adsorption etc.

EXAFS

Summary: X ray absorption

- Simple probe of local structure
- Has chemical sensitivity through the choice of the absorbing atom (which has its characteristics absorption edges)
- Doesn't require a crystalline sample, hence useful in amorphous systems and those with poor long-range order.
- Bond lengths (from the period of the oscillations) can be determined accurately ~ ± 0.02 Å
- Bond directions (from the polarisation dependence of the signal) can be determined qualitatively.
- Disadvantages:
 - Only appropriate for relatively simple structures.
 - Only sensitive to a few neighbouring shells.